807 research outputs found

    Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation

    Get PDF
    Objective Mitochondrial disturbances of energy-generating systems in childhood are a heterogeneous group of disorders. The aim of this multi-site survey was to characterise the natural course of a novel mitochondrial disease with ATP synthase deficiency and mutation in the TMEM70 gene. Methods Retrospective clinical data and metabolic profiles were collected and evaluated in 25 patients (14 boys, 11 girls) from seven European countries with a c. 317-2A -> G mutation in the TMEM70 gene. Results Severe muscular hypotonia (in 92% of newborns), apnoic spells (92%), hypertrophic cardiomyopathy (HCMP; 76%) and profound lactic acidosis (lactate 5-36 mmol/l; 92%) with hyperammonaemia (100-520 mu mol/l; 86%) were present from birth. Ten patients died within the first 6 weeks of life. Most patients surviving the neonatal period had persisting muscular hypotonia and developed psychomotor delay. HCMP was non-progressive and even disappeared in some children. Hypospadia was present in 54% of the boys and cryptorchidism in 67%. Increased excretion of lactate and 3-methylglutaconic acid (3-MGC) was observed in all patients. In four surviving patients, life-threatening hyperammonaemia occurred during childhood, triggered by acute gastroenteritis and prolonged fasting. Conclusions ATP synthase deficiency with mutation in TMEM70 should be considered in the diagnosis and management of critically ill neonates with early neonatal onset of muscular hypotonia, HCMP and hypospadias in boys accompanied by lactic acidosis, hyperammonaemia and 3-MGC-uria. However, phenotype severity may vary significantly. The disease occurs frequently in the Roma population and molecular-genetic analysis of the TMEM70 gene is sufficient for diagnosis without need of muscle biopsy in affected children

    Quartz micro-balance results of pulse-resolved erosion/deposition in the JET-ILW divertor

    Get PDF
    A set of quartz crystal microbalances (QMB) was used at JET with full carbon wall to monitor mass ero- sion/deposition rates in the remote areas of the divertor. After introduction of the ITER- like wall (ILW) in JET with beryllium main wall and tungsten divertor, strong reduction of the material deposition and accompanied fuel retention was observed. Therefore the existing QMB electronics have been modified to improve the accuracy of frequency measurements by a factor of ten down to 0.1 Hz which corresponds to 1.4 ng cm −2 . The averaged deposition rates of 1.2–3 ng cm −2 s −1 and erosion rates of 5.6–8.1 ng cm −2 s −1 were observed in the inner divertor of JET -ILW with the inner strike point positions close to the bot- tom edge of vertical tile 3 and at the horizontal tile 4 respectively. The erosion with averaged rates of ≈2.1 ng cm −2 s −1 and ≈120 ng cm −2 s −1 were observed in the outer divertor for the outer strike point po- sitions at tile 5 and tile 6 respectively.EURATOM 63305

    Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops

    Get PDF
    Establishment of cell polarity-or symmetry breaking-relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that in the yeast Saccharomyces cerevisiae a combination of actin- and guanine nucleotide dissociation inhibitor-dependent recycling of the central polarity regulator Cdc42 is needed to establish robust cell polarity at a single site during yeast budding. The guanine nucleotide dissociation inhibitor pathway consistently generates a single-polarization site, but requires Cdc42 to cycle rapidly between its active and inactive form, and is therefore sensitive to perturbations of the GTPase cycle. Conversely, actin-mediated recycling of Cdc42 induces robust symmetry breaking but cannot restrict polarization to a single site. Our results demonstrate how cells optimize symmetry breaking through coupling between multiple feedback loops

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    Unmet needs in the diagnosis and treatment of dyslipidemia in the primary care setting in Germany

    Get PDF
    Objectives and methods: DETECT is a cross-sectional study of 55,518 unselected consecutive patients in 3188 representative primary care offices in Germany. In a random subset of 7519 patients, an extensive standardized laboratory program was undertaken. The study investigated the prevalence of cardiovascular disease, known risk factors (such as diabetes, hypertension and dyslipidemia and their co-morbid manifestation), as well as treatment patterns. The present analysis of the DETECT laboratory dataset focused on the prevalence and treatment of dyslipidemia in primary medical care in Germany. Coronary artery disease (CAD), risk categories and LDL-C target achievement rates were determined in the subset of 6815 patients according to the National Cholesterol Education Program (NCEP) ATP III Guidelines. Results: Of all patients, 54.3% had dyslipidemia. Only 54.4% of the NCEP-classified dyslipidemic patients were diagnosed as ‘dyslipidemic’ by their physicians. Only 27% of all dyslipidemic patients (and 40.7% of the recognized dyslipidemic patients) were treated with lipid-lowering medications, and 11.1% of all dyslipidemic patients (41.4% of the patients treated with lipid-lowering drugs) achieved their LDL-C treatment goals. In conclusion, 80.3% of patients in the sample with dyslipidemia went undiagnosed, un-treated or under-treated

    Mitochondrial fission factor (MFF) is a critical regulator of peroxisome maturation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordData availability: The research data supporting this publication are provided within this paper and as supplementary information.Peroxisomes are highly dynamic subcellular compartments with important functions in lipid and ROS metabolism. Impaired peroxisomal function can lead to severe metabolic disorders with developmental defects and neurological abnormalities. Recently, a new group of disorders has been identified, characterised by defects in the membrane dynamics and division of peroxisomes rather than by loss of metabolic functions. However, the contribution of impaired peroxisome plasticity to the pathophysiology of those disorders is not well understood. Mitochondrial fission factor (MFF) is a key component of both the peroxisomal and mitochondrial division machinery. Patients with MFF deficiency present with developmental and neurological abnormalities. Peroxisomes (and mitochondria) in patient fibroblasts are highly elongated as a result of impaired organelle division. The majority of studies into MFF-deficiency have focused on mitochondrial dysfunction, but the contribution of peroxisomal alterations to the pathophysiology is largely unknown. Here, we show that MFF deficiency does not cause alterations to overall peroxisomal biochemical function. However, loss of MFF results in reduced import-competency of the peroxisomal compartment and leads to the accumulation of pre-peroxisomal membrane structures. We show that peroxisomes in MFF-deficient cells display alterations in peroxisomal redox state and intra-peroxisomal pH. Removal of elongated peroxisomes through induction of autophagic processes is not impaired. A mathematical model describing key processes involved in peroxisome dynamics sheds further light into the physical processes disturbed in MFF-deficient cells. The consequences of our findings for the pathophysiology of MFF-deficiency and related disorders with impaired peroxisome plasticity are discussed.Biotechnology & Biological Sciences Research Council (BBSRC)European Union Horizon 2020Research Foundation – FlandersGerman Research Foundation (DFG)Medical Faculty Mannheim (MEAMEDMA)Medical Research Council (MRC)Wellcome TrustKU LeuvenZellweger UKSidney Perry FoundationDevon Educational Trus

    Regulator of G Protein Signaling 3 Modulates Wnt5b Calcium Dynamics and Somite Patterning

    Get PDF
    Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Gα subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling

    Rational design of a ligand-controlled protein conformational switch

    Get PDF
    Design of a regulatable multistate protein is a challenge for protein engineering. Here we design a protein with a unique topology, called uniRapR, whose conformation is controlled by the binding of a small molecule. We confirm switching and control ability of uniRapR in silico, in vitro, and in vivo. As a proof of concept, uniRapR is used as an artificial regulatory domain to control activity of kinases. By activating Src kinase using uniRapR in single cells and whole organism, we observe two unique phenotypes consistent with its role in metastasis. Activation of Src kinase leads to rapid induction of protrusion with polarized spreading in HeLa cells, and morphological changes with loss of cell–cell contacts in the epidermal tissue of zebrafish. The rational creation of uniRapR exemplifies the strength of computational protein design, and offers a powerful means for targeted activation of many pathways to study signaling in living organisms

    Biallelic mutations in NBAS cause recurrent acute liver failure with onset in infancy

    Get PDF
    Acute liver failure (ALF) in infancy and childhood is a life-threatening emergency. Few conditions are known to cause recurrent acute liver failure (RALF), and in about 50% of cases, the underlying molecular cause remains unresolved. Exome sequencing in five unrelated individuals with fever-dependent RALF revealed biallelic mutations in NBAS. Subsequent Sanger sequencing of NBAS in 15 additional unrelated individuals with RALF or ALF identified compound heterozygous mutations in an additional six individuals from five families. Immunoblot analysis of mutant fibroblasts showed reduced protein levels of NBAS and its proposed interaction partner p31, both involved in retrograde transport between endoplasmic reticulum and Golgi. We recommend NBAS analysis in individuals with acute infantile liver failure, especially if triggered by fever
    • …
    corecore